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This communication reports the rational design and synthesis of
a â-lactam conjugate, which transforms into a hydrogelator by
catalysis of aâ-lactamase and yields a supramolecular hydrogel.
â-Lactam antibiotics (e.g., penicillins and cephalosporins), a major
class of antimicrobial agents in clinical use for treating bacterial
infections, rely on the strainedâ-lactam ring to react with penicillin-
binding proteins (PBPs) to inhibit cell wall synthesis and growth
of bacteria.1 â-Lactamases hydrolyze the four-memberedâ-lactam
ring and cause the most widespread antimicrobial drug resistance.2

Thus, it is essential to detect the presence ofâ-lactamases and screen
their inhibitors.3 Although fluorescent (e.g., genotyping based on
polymerase chain reaction (PCR)) or colorimetric assays (e.g., using
nitrocefin as indicator) are able to perform such tasks,4 a simple,
rapid, and accurate assay is desirable because colorimetric assay
fails in a colored medium and PCR remains costly and time-
consuming. Therefore, we chose to use the event of hydrogelation
to report the presence ofâ-lactamases because the formation of
supramolecular hydrogels5,6 offers several advantages as an assay
for an enzyme: (i) It is easy to determine a macroscopic change
such as hydrogelation (even in a colored medium) by the naked
eye, thus eliminating the need of any instrument; (ii) an enzyme
can catalyze either bond formation or bond cleavage to trigger
hydrogelation,7,8 which makes this strategy suitable for a wide range
of enzymes; and (iii) the hydrogel enlists water as part of the
reporting system so that it can serve as a low-cost assay to be used
in developing economies.9

The above merits motivate us to design a precursor to examine
whether aâ-lactamase triggers supramolecular hydrogelation. Our
results show that the addition of aâ-lactamase to the solution
containing the precursor (3) results in formation of a supramolecular
hydrogel. Moreover,3 shows selective response to the lysates of
bacteria (e.g.,E. coli) containing different types ofâ-lactamases.
As the first â-lactamase-catalyzed hydrogelation, this result has
several significant advances. First, it confirms the use of hydrogel
to reportâ-lactamase, thus offering a general platform to design
precursors to report a specific subclass ofâ-lactamases. Second, it
provides a simple, low-cost strategy to identifyâ-lactam antibiotic-
resistant pathogens and to screen the inhibitors ofâ-lactamases.
Third, it may lead to the use of self-assembly and hydrogelation to
study or modulate biological processes and interactions of interest
(including intracellular gel-sol transition related cell adhesion and
cell motility10) because of the well-established method of controlled
expression ofâ-lactamases in cells.11,12

Figure 1 outlines the general principle and molecular design for
a â-lactamase-catalyzed hydrogelation. Using the cephem nucleus
as the linker, a hydrophilic group connects a hydrogelator to

constitute the precursor, which is too soluble to form a hydrogel
(i.e., the precursor supplies too little hydrophobic interaction to self-
assemble into nanofibers that gel water6). Upon the action of a
â-lactamase, theâ-lactam ring opens to release the hydrogelator,
which self-assembles in water into nanofibers to afford a hydrogel.
The key feature of the design is to use aâ-lactamase to generate a
hydrogelator. Scheme 1 shows the actual structures and the synthesis
of the molecules that employ the design in Figure 1. AnN-
hydroxysuccinimide (NHS)-activated napthalene Phe-Phe (Nap-
FF) reacts with 2-aminoethanethiol to yield an effective hydroge-
lator, 1, which forms hydrogels at the concentration of 0.3 wt %.
Following literature procedure,11 we converted 7-amino-3-chlo-
romethyl 3-cephem-4-carboxylic acid diphenyl methyl ester hy-
drochloride (ACLH) into2. The nucleophilic substitution between
1 and2 in a weak basic condition, followed by a simple deprotection
(i.e., removal of Boc), creates the precursor (3) in a good yield
(85.4%).13
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Figure 1. Illustration of the design of a substrate ofâ-lactamase (Bla) as
the precursor of a hydrogelator (X) S or COO); the opening ofâ-lactam
ring catalyzed by Bla; one possible mode of the self-assembly of the
hydrogelator and the formation of the hydrogel.

Scheme 1 a

a Conditions: (i) NaHCO3, DMF; (ii) TFA, anisole, CH2Cl2; (iii)
â-lactamase, pH) 8.0.
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After obtaining the precursor (3), we tested if aâ-lactamase
would trigger hydrogelation.3 (1.75 mg) dissolves in water (0.50
mL, pH ) 8.0) to result in a viscous solution (Figure 2A). A half
of an hour after the addition of 0.55 mg of aâ-lactamase (15-25
U/mg13) to the solution at room temperature the liquid turns into
an slightly opaque hydrogel (gelI , Figure 2B). HPLC test reveals
that 49.0% of 3 transforms to1 1 h after addition of the
â-lactamase.13 Rheological experiment (i.e., dynamic time sweep)
confirms that the solution of3 is a Newtonian liquid and indicates
that the hydrogelation starts at about 22 min after addition of the
â-lactamases.13 According to the TEM images shown in Figure 2,
the cryo-dried solution of3 is unable to exhibit a well-defined
nanostructure (Figure 2C), and the cryo-dried gelI shows nanofibrils
with the diameters from 30 to 70 nm (Figure 2D). We also found
that the addition of3 into a solution ofâ-lactamase and its inhibitor
(i.e., clavulanic acid) results in only 3.4% conversion of3 to 1
after 12 h (based on the HPLC test) and fails to yield a hydrogel.13

This result may lead to a convenient method to screen the inhibitor
of â-lactamase by using enzymatic hydrogelation.8

To evaluate whether3 would respond toâ-lactamases in bacteria,
we used the sonicated lysates ofE. coli to treat the solution of3.
As shown in Table 1, samples B, C, E, and F are the lysates
containing different kinds ofâ-lactamases (CTX-M13, CTX-M14,
SHV-1, and TEM-1, respectively);14 others are controls. We
observed hydrogelation triggered by the four kinds ofâ-lactamase.13

The HPLC traces clearly indicate the effective conversion of3 to
1 (99.7, 99.5, 65.2, and 84.3% in samples B, C, E, and F,
respectively, but 5.8% in sample D and<0.5% on samples A and
G) by adding different cell lysates. TEM images13 also show that
the self-assembled nanofibers in those four hydrogels resulted from
the hydrolysis of3 catalyzed by theâ-lactamases. No hydrogelation
observed for sample D indicates that this gelation-based assay has
a higher reporting threshold than the nitrocefin assay does,
suggesting that the assay based on enzymatic hydrogelation provides
a particularly useful reporting method for systems that have

significant background activity, which cause a false positive on
nitrocefin assay. More completed conversion in samples B and C
than in samples E and F also indicates that CTX-M13 and CTX-
M14 are ESBLs.14 This observation may lead to an alternative
approach to assay theâ-lactamase (e.g., ESBL) in a more specific
way via tailoring the structure of the precursors.

In summary, we demonstrate that aâ-lactamase is able to catalyze
the formation of a supramolecular hydrogel. This approach, which
involves the use of aâ-lactamase to control the self-assembly of
small molecules, offers an alternative platform to study the
inactivation ofâ-lactam antibiotics for the approaches that coun-
teract antimicrobial drug resistance, provides a unique opportunity
to generate nanostructures in regulated biological environment, and
may lead to useful practical applications (e.g., selectively detecting
ESBL bacteria in a clinical setting).
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Figure 2. The optical images and the transmission electron microscopy
(TEM) images of (A, C) viscous solution of3 and (B, D) gelI .

Table 1. The Results of Adding Different Types of Cell Lysates to
the Solutions of 3 (0.35 wt %)a

sample enzymeb gelationg conversion (%)h nitrocefin

A C600d - <0.5 -
B CTX-M13c + 99.7 +
C CTX-M14c + 99.5 +
D JP995d - 5.8 +
E SHV-1e + 65.2 +
F TEM-1e + 84.3 +
G nonef - <0.5 -

a Conducted as a blind test.b Enzyme in 1.0 mL of the lysates ofE. coli
(10E10 cells), except G.c Extended-spectrumâ-lactamase (ESBL).d A and
D wereâ-lactamase negativeE. coli controls.e Broad-spectrumâ-lactamase.
f G contains only water.g Gels form in less than 2 h.h Percentage of3 to
form 1 after 6 h.
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